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We consider the nonstationary laminar regime of ultrafiltration in tubular membrane filters with one
permeable surface depending on the selective properties of the membrane.

Membrane technologies, including ultrafiltration, are of great importance in many branches of indus-
try. It is these technologies, together with other conventional methods, that have been linked, first of all, to
the prospects of solving a number of pressing environmental problems in recent years. These include sewage
treatment, water treatment, and treatment of aqueous solutions. This list can be supplemented with problems
arising in medicine and in the chemical, petrochemical, food, and other branches of industry, i.e., where it is
essential to separate, purify, and concentrate solutions.

Modern industry produces a large number of ultrafiltration apparatuses of various designs [1, 2],
among which the apparatuses with tubular membrane elements have come into wide use. Variants of these
filters include tubular membrane elements with one permeable surface. The latter are two tubes placed into
one another, one of which is a membrane and the other of which is a drainage skeleton with a microporous
structure that simultaneously serves as a device for removal of a permeate and support for the membrane.
Between the tubes there is a gap over which the liquid to be separated moves. Depending on the location of
the membrane, we distinguish three types of similar filters: filters with a membrane inside the skeleton, filters
with a membrane outside the skeleton, and a combined variant. The most widely used are the apparatuses
with filters of the first type.

Based on the semiintegral method of [3, 4], in the present work we suggest the physical pattern of
processes that occur in the above devices, more specifically, its hydrodynamic and diffusion parts. This prob-
lem is of great practical importance. Its solution makes it possible to identify many problems that arise in
developing and creating new, more perfect ultrafiltration apparatuses, to determine methods of their elimina-
tion, and to improve substantially the search for the most optimum operating conditions of the existing de-
vices. The urgency of the latter problem is due to the variety of separable solutions, for each of which one
must select filtration parameters of its own.

Let us consider the nonstationary regime of ultrafiltration in an annular channel formed by two coax-
ial circular cylinders of radii R1 and R2 (R1 < R2). We will assume that the flow of a liquid in the channel
between the cylinders is steady laminar, the internal cylinder is permeable, and the gel layer, formed on the
cylinder due to the phenomenon of concentration polarization, is stationary (see Fig. 1). The concentration
polarization, i.e., gel formation, adversely affects the performance of the membranes: this is accompanied by
a drop in the specific productivity and the capacity for regeneration, and the efficiency of separation as a
whole decreases. In order to evaluate the degree of influence of this phenomenon, it is necessary to find the
concentration distribution of the solutes on the membrane surface. To solve the posed problem, first we must
obtain the velocity distribution in the channel that takes into account a partial nonuniform outflow of the
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liquid through the permeable surface. This outflow decreases along the channel length, since, due to the for-
mation of the gel layer, the permeability of the membrane drops. The legitimacy of this approach is associ-
ated with the quasistationary nature of the ultrafiltration process, i.e., the flow field of the solution is virtually
independent of the concentration  field (the Reynolds and Pe′clet numbers that determine these fields differ by
3−4 orders of magnitude (Re << Pe)); this means that the latter problem can be considered separately from
the basic one. The system of equations of motion and continuity describing the flow will have the form

 ûrr
 ′′  + 

1
r
 ûr

 ′ = 
1
µ

 Pz
′  , (1)

Pr
′  = 0 , (2)

v̂r
 ′ + 

1
r
 v̂ = 0 (3)

with the following boundary conditions:

û_r=R2
 = 0 ;   v̂_r=R2

 = 0 ;   û_r=R1+f = 0 ;   v̂_r=R1+f = Vf . (4)

It is obvious from Eq. (2) that P = P(z). Applying the first and third boundary conditions of (4), we integrate
Eq. (1):

û = 
Pz

′

4µ
 



r2 − R2

2 + 
R2

2 − (R1 + f )2

ln ((R1 + f ) ⁄ R2)
 ln 

r
R2




 . (5)

However, because of the complexity of expression (5), it cannot be used in this form for further calculations
(for solution of a diffusion problem). Therefore, we take the following assumptions that occur in actual ul-
trafiltration apparatuses:

h ⁄ R << 1 ;   f ⁄ h << 1 , (6)

where h = R2 − R1 and R = R1. It should be noted that the second condition (6) was already kept in mind in
posing the problem, i.e., in writing the system of equations (1)−(4), we assumed that the gel height is negli-

gibly small and it does not change the cross section of the channel. Introducing a new variable y = r − R, we

Fig. 1. Schematic representation of separation of liquids in tubular mem-
brane elements with one permeable surface.
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expand the logarithms into a series in powers h ⁄ R, f ⁄ R, and f ⁄ h, respectively, and restrict ourselves to the

first two expansion terms. Then, having applied the expansion 



1 − 

h + f
2R





−1

 = 1 + 
h + f
2R

, we obtain

û = 
h2Pz

′

2µ
 








y2

h2 − 1



 A − 




1 + 

f

h




 




y

h
 + 1




 B




 ,

where

A = 1 + 
h + f
2R

 + 




h + f
2R





2

 ;   B = 1 + 
h + f
2R

 .

From this, with allowance for the assumptions (6) taken for the longitudinal component of the vector of the
liquid velocity in the channel, we have

û = − 
h2Pz

′

2µ
 
y

h
 



1 − 

y
h




 . (7)

Now we substitute Eq. (7) into the continuity equation (3). Using Eq. (6) and the expansion
1/(R + y) = (1 − y ⁄ R)/R, with the second and fourth boundary conditions of (4), we obtain expressions for the
radial component of the profile and for the transmembrane velocity, respectively:

v̂ = − 
h3Pzz

 ′′

12µ
 



1 + 2 

y3

h3 − 3 
y2

h2




 , (8)

V^ f = 
h3Pzz

 ′′

12µ
 . (9)

From Eqs. (7) and (8) we eliminate the unknown pressure gradient Pz
′ . For this, we integrate Eq. (5)

over the channel cross section and calculate the mean velocity at the entrance to the channel (z = 0 and f = 0):

u
_

0 = − 
Pz

′_z=0

8µ
 



R2

2 + R1
2 − 

R2
2 − R1

2

ln (R2
 ⁄ R1)




 .

Resorting to expansions similar to the above ones, we find

u
_

0 = − 
h2Pz0

′

16µ
 .

(10)

Then, integrating Eq. (9) over the channel length and using Eq. (10), we express Pz
′  in terms of u

_
0.

Substitution of the result obtained into the initial formulas gives

û = 
8

h
 






u
_

0h − 
3

4
 ∫ 
0

z

Vf dz






 




y

h
 − 

y2

h2




 , (11)
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v̂ = Vf 



1 + 2 

y3

h3 − 3 
y2

h2




 . (12)

Thus, based on comments (6), it can be considered that with the gel formation taken into account,
formulas (11) and (12) determine exactly the flow field of a separable liquid in tubular filters with one per-
meable surface. As has been noted above, because of the quasistationary nature of the ultrafiltration process
the solutions obtained are applicable to the description of the phenomenon of concentration polarization. To
do this, we use an equation of convective diffusion that characterizes the process of accumulation of a sub-
stance at a certain point of space depending on time. In order to simplify further calculations, we pass to
dimensionless quantities. Then the formulation of the problem will appear as follows:

∂ (Θ − 1)
∂τ

 + 
∂u (Θ − 1)

∂ξ
 − 

∂v (Θ − 1)
∂η

 = 
1

Pe
 
∂2 (Θ − 1)

∂η2  . (13)

Now we denote the boundary conditions. Let ξ1 be the point beginning with which the formation of the gel
layer on the membrane surface occurs. The conditions before the given point and after it will be different:

for ξ ≤ ξ1

u_η=0 = 0 ;   v_η=0 = V   (V = const) ;   ϕVΘω + 
1

Pe
 
∂Θ
∂η



 η=0

 = 0 ;

Θ_η=1 = 1 ;   Θ_ξ=0 = 1 ;   Θ_τ=0 = 1 ;
(14)

for ξ ≥ ξ1

u_η=δ = 0 ;   v_η=δ = Vδ ;   ϕVδΘg + 
1

Pe
 
∂Θ
∂η



 η=δ

 = Θg 
∂δ
∂τ

 ;   Θ_η=1 = 1 ;

Θ_η=δ = Θg ;   δ (ξ, τ)_ξ=ξ1
 = 0 .

(15)

For the completeness of the concentration-field pattern, it is necessary that the requirements following
from the physical concepts of the boundary-layer structure be added to Eqs. (14) and (15), i.e., it can be
assumed that the concentration grows only within the limits of the boundary layer. Then Θ|η=∆ = 1 and

∂Θ
∂η  η=∆ = 0. Taking this fact into account, we integrate Eq. (13) across the diffusion boundary layer with

boundary conditions (14) and (15). As a result, we have, respectively

∂
∂τ

 ∫ 
0

∆

(Θ − 1) dη + 
∂

∂ξ
 ∫ 
0

∆

u (Θ − 1) dη = VΓ ,   ξ ≤ ξ1 , (16)

∂
∂τ

 ∫ 
δ

∆

(Θ − 1) dη + (2Θg − 1) 
∂δ
∂τ

 + 
∂
∂ξ

 ∫ 

δ

∆

u (Θ − 1) dη = VδΓg ,   ξ ≥ ξ1 , (17)

where Γ = 1 − (1 − ϕ)Θ and Γg = 1 − (1 − ϕ)Θg.
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Equation (16) characterizes the pre-gel regime of ultrafiltration, while Eq. (17) characterizes the stage
of gel formation. It is obvious that when ξ = ξ1, the equality Θ = Θg will be satisfied. We use a semiintegral
approach according to which the law of distribution of the concentration of a substance in the boundary layer
can be determined immediately from Eqs. (16) and (17). Proceeding from the solution of the stationary prob-
lem, we assign the nonstationary distribution of the concentration. Since the thickness of the diffusion bound-
ary layer and the thickness of the gel layer are many times smaller than the channel height, in the formulas
of velocity distribution (11) and (12) we can restrict ourselves only to the first terms in η. Then for the
pre-gel regime it follows that:

8 

1 − 

3

4
 Vξ



 η 

∂Θ
∂ξ

 − V 
∂Θ
∂η

 = 
1

Pe
 
∂2Θ
∂η2  ,   ϕVΘω + 

1

Pe
 
∂Θ
∂η



 η=0

 = 0 , (18)

and for the gel regime, that

8 






1 − 

3

4
 Vξ1 − 

3

4
 ∫ 

ξ1

ξ

Vδdξ






 (η − δ) 

∂Θ
∂ξ

 − Vδ 
∂Θ
∂η

 = 
1

Pe
 
∂2Θ
∂η2  ,   ϕVδΘg + 

1

Pe
 
∂Θ
∂η



 η=δ

 = 0 . (19)

The first terms of Eqs. (18) and (19) in the immediate vicinity of the membrane surface will be small com-
pared to the other terms. Therefore, they can be neglected. Integrating the remaining expressions with the
corresponding boundary conditions twice, we obtain the stationary distribution of the concentration near the
membrane:

Θ = Θω (ξ) [1 − ϕ (1 − exp (− Pe Vη))] ,   ξ ≤ ξ1 ;   

Θ = Θg [1 − ϕ (1 − exp (− Pe Vδ (η − δ)))] ,   ξ ≥ ξ1 .
(20)

Consequently, with account for the statement, noted in formulating the problem, that the concentra-
tion varies only within the limits of the diffusion layer, the above distribution over the entire channel height
will be written in general form as follows:

Θ = 




Θω (ξ) [1 − ϕ (1 − exp (1 − Pe Vη))] ,
1 ,

   
0 ≤ η ≤ ∆ ,

∆ ≤ η ≤ 1
(21)

in the first stage of the process (before the gel formation) and

Θ = 











Θg ,

Θg [1 − ϕ (1 − exp (− Pe Vδ (η − δ)))]
1 ,

 ,   

0 ≤ η ≤ δ ,

δ ≤ η ≤ ∆ ,

∆ ≤ η ≤ 1

(22)

in the stage of gel formation. From this, for the sizes of the boundary and gel layers it follows that

∆ = 
1

PeV
 ln 

ϕΘω

Γω
 ,   ξ ≤ ξ1 ;

(23)

∆ − δ = 
1

PeVδ
 ln 

ϕΘg

Γg
 ,   ξ ≥ ξ1 . (24)
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Here Γω = 1 − (1 − ϕ)Θω.
We relate the drop in the permeability to the gel-layer thickness:

Vδ = V ⁄ (1 + kδ) . (25)

Thus, all the unknowns needed for finding the concentration are determined. We analyze each of Eqs.
(16) and (17) individually.

We substitute into Eq. (16) the velocity distribution from formulas (11) and (12) and the concentra-
tion distribution from Eq. (21). With Eq. (23) taken into account, upon calculation of the integrals, we obtain

1

PeV
 

∂

∂τ
 



Θω − Γω ln 

ϕΘω

Γω
 − 1




 + 

8

Pe2V2 
∂

∂ξ
 



1 − 

3

4
 Vξ




 



Θω − Γω ln 

ϕΘω

Γω
 −

− 
1

2
 Γω 




ln 

ϕΘω

Γω





2

 − 1



 = VΓω ,   ξ ≤ ξ1 . (26)

The nonstationary ultrafiltration process will be considered as a combination of two limiting cases:
the stationary regime and the especially nonstationary regime.

For the stationary regime without gel formation, from Eq. (26) we have

∂
∂Vξ

 



1 − 

3

4
 Vξ




 



Θω − Γω ln 

ϕΘω

Γω
 − 

1

2
 Γω 




ln 

ϕΘω

Γω





2

 − 1



 = 

Pe2V2Γω

8
 . (27)

It is impossible to find a general solution of this equation; therefore, we restrict ourselves to some of the
most important particular cases.

1. For small distances from the entrance to the channel the following conditions can be satisfied:
Vξ << 1 and Θω  D 1. Then Θω can be represented in the form Θω = 1 + ε, where ε < 1. Whence ln ϕΘω =
ln ϕ(1 + ε) and Γω = ϕ(1 − ε(1 − ϕ)/ϕ). Resorting to expansions of the logarithms into a series in powers ε
and restricting ourselves to the cubic expansion terms, from Eq. (27) we obtain

dε3

dVξ
 = 

3
4

 ϕ3Pe2V2 (1 − ε (1 − ϕ) ⁄ ϕ) . 

If the selectivity of the membranes is rather high (otherwise, there is little sense in performing the
process), then the term ε(1 − ϕ)/ϕ << 1. Neglecting this term, we integrate the latter expression provided that
ε|ξ=0 = 0. Then adding unity to the result, we find an expression for the concentration on the membrane
surface:

Θω = 1 + ϕ (3Pe2V2Vξ ⁄ 4)1 ⁄ 3 . (28)

2. Suppose that the terms containing the logarithm of concentration are small compared to the con-
centration (this is possible for large distances from the entrance to the channel). Then with the boundary
condition Θ|ξ=0 = 1 Eq. (27) can easily be integrated. Finally, we obtain

Θω = 
1 − 6 ⁄ Pe2V2 − ϕ (1 − 3Vξ ⁄ 4)−1+(1−ϕ)Pe

2
V

2 ⁄ 6

1 − ϕ − 6 ⁄ Pe2V2  . (29)

279



We should note here two limiting cases for which formula (29) is considerably simplified:

2a)   1 − ϕ << 
6

Pe2V2 ,   Θω = 1 + 
Pe2V2Vξ

8 (1 − 3Vξ ⁄ 4)
 , (30)

2b)   1 − ϕ >> 
6

Pe2V2 ,   Θω = 
1

1 − ϕ
 (1 − ϕ (1 − 3Vξ ⁄ 4)(1−ϕ)Pe

2
V

2
 ⁄ 6) . (31)

Undoubtedly, in both variants the concentration on the membrane surface grows continuously with
increase in the distance from the entrance to the channel, and in case 2b) it tends to the obvious maximum
Θω = 1/(1 − ϕ).

3. For a membrane with ideal selectivity (ϕ = 1) there also exists the exact solution of Eq. (27)

Θω − ln Θω − 
1
2

 (ln Θω)2 = 1 + 
Pe2V2Vξ

8 (1 − 3Vξ ⁄ 4)
 . (32)

It is easy to note that by assuming Θω >> ln Θω in Eq. (32), we arrive at variant 2a). Consequently,
when condition 2a) is satisfied the membrane selectivity is close to unity (nearly ideal selectivity (ϕ ≅  1)).

We analyze the especially nonstationary regime of ultrafiltration without gel formation. Then Eq. (26)
will have the form

1

PeV
 

∂
∂τ

 



Θωτ − Γωτ ln 

ϕΘωτ

Γωτ
 − 1




 = VΓωτ . (33)

It is impossible to obtain a general solution of this equation; therefore, we proceed similarly to the
stationary case.

1. Θωτ D 1 (this holds for small times of the process when the concentration of the solution to be
separated has no time to change substantially). Then Θωτ = 1 + ε and ε << 1. Expanding the logarithms into
a series in powers ε and restricting ourselves to the first expansion terms from Eq. (33), we find

dε2

dVτ
 = 2ϕ2PeV 




1 − 

ε (1 − ϕ)
ϕ




 .

Taking into account that ε(1 − ϕ)/ << 1, we integrate the last expression provided that ε|τ=0 = 0. Fi-
nally, for the concentration on the membrane surface we have

Θωτ = 1 + ϕ √ 2PeVVτ  . (34)

2. For (1 − ϕ)Θωτ << 1 (as follows from the analysis of the stationary regime, this is equivalent to the
condition of nearly ideal selectivity 1 − ϕ << 6 ⁄ Pe2V2), Eq. (33) has the solution

Θωτ − ln Θωτ = 1 + PeVτ . (35)

The same result for ideal selectivity is obtained from Eq. (33).
3. For Θωτ >> ln Θωτ and (1 − ϕ)Θωτ >> 1 (this is equivalent to 1 − ϕ >> 6 ⁄ Pe2V2), the concentration

is equal to

Θωτ = (1 − ϕ exp (− (1 − ϕ) PeVVτ)) ⁄ (1 − ϕ) . (36)
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It is obvious that formula (36) holds for large times or large values of PeV.
Thus, generalizing the above data at this stage of the process, we can say that the dependence of the

concentration on the membrane surface on the distance and time is of a complex nature not allowing one to
find exact general analytical solutions. However, the most important particular cases that have been consid-
ered and implemented in practice are quite sufficient for us to have an idea of the entire pattern of separation
at this stage. The analysis of these cases shows that the resistance of the membrane (here it is associated with
V) and its selective properties exert the main influence on the process. For high values of the latter parameter
(close to 1), its influence can be ignored. Comparing the formulas for the stationary and the especially non-
stationary regimes (the condition Θω = Θωτ) that correspond to the identical conditions for performing the
ultrafiltration process, it is also possible to determine the time needed to attain the stationary operating regime

 τs = 
1
2

 

3
4

 Pe ξ2



1 ⁄ 3

 ,   Θωτ ~   1 ;

τs = 
1

8
 PeVξ ,   1 − ϕ >> 

6

Pe2V2 ;   τs = 
PeVξ

8 (1 − 3Vξ ⁄ 4)
 ,   1 − ϕ << 

6

Pe2V2 .
(37)

Now we return to Eq. (17), which characterizes the second stage of the ultrafiltration process, i.e., gel
formation. First we analyze the stationary part. To do this, we substitute the expressions for u from Eq. (11)
and for Θ from Eq. (22) into Eq. (17), and then with account for Eq. (24) integrate with respect to ξ. As a
result, we obtain

8 






1 − 

3

4
 Vξ1 − 

3

4
 ∫ 

ξ1

ξ

Vδ dξ






 

Σg

Pe2Vδ
2 = ∫ 

0

ξ1

ΓωVdξ + ∫ 

ξ1

ξ

ΓgVδdξ . (38)

To contract the representation, we denote here

Σg = Θg − Γg ln 
ϕΘg

Γg
 − 

1

2
 



ln 

ϕΘg

Γg





2

 − 1 ,   Γω = 1 − (1 − ϕ) Θω .

When ξ = ξ1, the position of the point of onset of gel formation on the membrane is obtained:

   ∫ 
0

ξ1

ΓωVdξ = 
8Σg (1 − 3Vξ1

 ⁄ 4)

Pe2V2  . (39)

We are unable to calculate this integral in general form. However, as follows from the examples considered
above, the dependence of the solute concentration near the membrane surface on ξ has a nonlinear nature;
therefore, it can be evaluated from solutions (39) for two limiting cases:

a) the linear dependence Θω = 1 + Vξ(Θg − 1)/Vξ1;
b) Θω = Θg.
Then, upon substitution of these values into Eq. (39) and integration, we obtain the bounds of the

region of determination of the given point:

12Σg

(ϕ + Γg) Pe2V2 ≤ 
Vξ1

4 ⁄ 3 − Vξ1

 ≤ 
6Σg

ΓgPe2V2 . (40)
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For the ideal selectivity the position of the point of onset of gel formation is determined from the
formula

Vξ1 = 




3
4

 + 
Pe2V2

8Σg





−1

 .

Taking condition (39) into account, we solve Eq. (38) for the integral

  ∫ 

ξ1

ξ

Vδdξ = 
8 (1 − 3Vξ1

 ⁄ 4) Σg (V
2 − Vδ

2)

V2 (6Σg + ΓgPe2Vδ
2)

 .
(41)

We differentiate expression (41) with respect to ξ and then integrate it applying the boundary condi-
tion Vδ|ξ=ξ1

 = V:

4 ⁄ 3 − Vξ

4 ⁄ 3 − Vξ1

 = 
Vδ

V
 




1 + F

F + (Vδ
 ⁄ V)2




 − 

1 + F

√F
 



arctan 

1

√F
 − arctan 

Vδ

V √F




 , (42)

where F = 6Σg
 ⁄ ΓgPe2V2.

For the ideal selectivity (ϕ = 1) formula (42) takes the form

Vξ = 
4

3
 












1 − 
Vδ

V
 




Vξ1

4 ⁄ 3 − Vξ1

 + 
Vδ

2

V2





−1

 + √4 ⁄ 3 − Vξ1

Vξ1

 arctan √4 ⁄ 3 − Vξ1

Vξ1

  
1 − 

Vδ
V

1 + 
Vδ
V

 
4 ⁄ 3 − Vξ1

Vξ1












 .

For the values of Vξ1, which are close to zero, solution of Eq. (41) is considerably simplified

Vδ

V
 = 




1 + (Vξ − Vξ1) 

ΓgPe2V2

4Σg





−1 ⁄ 3

 , (43)

and for ϕ = 1 the solution is of the form

Vδ
V

 = 




2Vξ
Vξ1

 − 1




−1 ⁄ 3

 .

In the case where, in addition, the condition Vξ ⁄ Vξ1 >> 1 is satisfied, from the latter expression it
follows that

Vδ = 




4Σg

ΓgPe2ξ





1 ⁄ 3

 . (44)

When ϕ = 1, formula (44) will be written for clarity in open form:

Vδ = 


4

Pe2ξ
 

Θg − ln Θg − 

1

2
 ln2 Θg − 1








1 ⁄ 3

 .
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We comment briefly on the stage conducted. From the general solution (42) it is obvious that in ad-
dition to the resistance of the membrane and its selectivity, the resistance of the gel layer also exerts an
influence on the process. This resistance increases gradually and becomes predominant (Eq. (43)), and pro-
vided that Vξ ⁄ Vξ1 >> 1 it increases so much that the resistance of the membrane can be simply neglected
(Eq. (44)). In this connection, the regime of ultrafiltration with gel formation can be conventionally subdi-
vided into two intervals: 1) from the point ξ1 to a certain point ξ > ξ1 where the resistances of the membrane
and of the gel layer are quantities of the same order of magnitude; 2) further, i.e., beyond the given interval
and to the end of the channel, the latter quantity is of decisive importance during the process.

Now we consider the especially nonstationary regime of ultrafiltration with gel formation. Suppose
that τ1 is the time of onset of gel formation on the membrane surface. Then after differentiation of Eq. (25),
from Eq. (17) we obtain

∂

∂τ
 ∫ 

δ

∆

(Θ − 1) dη − 
V

kVδ
2 (2Θg − 1) 

∂Vδ

∂τ
 = ΓgVδ ,   τ ≥ τ1 . (45)

Substituting Eqs. (22) and (24) into expression (45), we calculate the integral on the left-hand side of
expression (45). As a result, upon introducing the notation Στ = Θg − 1 − Γg ln  (ϕΘg

 ⁄ Γg), we arrive at the
ordinary differential equation

− 




Στ

Pe
 + 

V (2Θg − 1)

k




 

1

Vδ
2 

dVδ

dτ
 = ΓgVδ .

(46)

whose solution is as follows:

Vg

V
 = 




1 + 

2 (Vτ − Vτ1)
Στ

 ⁄ Pe VΓg + (2Θg − 1) ⁄ kΓg





−1 ⁄ 2

 . (47)

The time of onset of gel formation will be evaluated in a way similar to the stationary case. Finally,
we obtain

2Στ

PeV (ϕ + Γg)
 ≤ Vτ1 ≤ 

Στ

PeVΓg
 . (48)

Whence it is obvious that the time of onset of gel formation for the ideal selectivity of the membrane is
calculated from the formula

Vτ1 = 
Θg − ln Θg − 1

PeV
 . (49)

By analogy with the pre-gel stage of the process considered above, by equating the corresponding
formulas of the stationary and especially nonstationary regimes, it is possible to determine the time when it
attains the stationary regime. Then, assuming that Vξ1 is small, from Eqs. (43) and (47) we have

Vτs = Vτ1 + 
1

2
 








(Vξ − Vξ1) ΓgPe2V2

4Σg
 + 1





2 ⁄ 3

 − 1



 




2Θg − 1

Γgk
 + 

Στ

ΓgPeV




 . (50)

In the case where Vξ ⁄ Vξ1 >> 1, the expression has the form
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Vτs = 
1

2
 




(Vξ − Vξ1) ΓgPe2V2

4Σg





2 ⁄ 3
 




2Θg − 1

Γgk
 + 

Στ

ΓgPeV




 .

For ϕ = 1, the latter expression takes the form

Vτs = 




2Θg − 1

2k
 + 

Vτ1

2




 




2Vξ
Vξ1





2 ⁄ 3

 .

Thus, the analytical solutions obtained in this work make it possible to form the general pattern of
nonstationary concentration polarization − gel formation − with laminar ultrafiltration in tubular filters with
one permeable surface. We briefly mention once again the basic laws of the given process. Thus, at the first
stage, before the onset of gel formation, the main factor affecting its course is the membrane itself (more
exactly, its resistance). At the second stage, i.e., after the point of gel formation, the appearing gel layer
introduces fundamental changes into the process: at a certain initial channel length the influence of this layer
is comparable with the influence of the membrane, and subsequently it becomes determining. The selective
properties of the membrane are mainly of great importance at the first stage. Here the change in the selectiv-
ity that at first glance is relatively small may reflect substantially on the entire pattern of separation.

NOTATION

ξ = x/h and η = y/h, dimensionless longitudinal and transverse coordinates; u = û ⁄ u
_

0 and v = v ⁄ u
_

0,
dimensionless components of the velocity vector; u

_
0, mean velocity at the entrance to the channel; R = R1,

R2, and h = R2 − R1, inner and outer radii and characteristic dimension of the channel; t and τ = tu
_

0
 ⁄ h, time

and dimensionless time; τs, dimensionless time of attainment of the stationary regime; µ, coefficient of kine-
matic viscosity; Pe = (u

_
0h)/D, diffusional Pe′clet number; D, diffusion coefficient; C, concentration of the sol-

ute; Θ = C ⁄ C0, the same, dimensionless; C0, concentration of the solute at the entrance to the channel; Θω,
dimensionless concentration of the solute on the membrane; Θωτ, the same, in the especially nonstationary
regime; Θg, nondimensional concentration of gel formation; V = V

^ ⁄ u
_

0 and Vg = V
^

f
 ⁄ u

_
0, dimensionless trans-

membrane velocity; k, dimensionless coefficient of hydraulic resistance of the gel layer; f, size of the gel
layer; δ = f ⁄ h, the same, dimensionless; ∆, dimensionless size of the diffuse boundary layer.
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